
N.V.PHILIPS Natuurkundig Laboratorium
	

NATLAB
NR : TPC
DD : 81/01/22
PAR : EO

TWIN PASCAL COMPILER

1. Introduction
2. General
2.1. Source input
2.2. Recovery from syntax errors 	 1
2.3. Object code 	 1
2.4. Symbollist 	 3
2.5. Types 	 4
1. Expressions 	 5
J.1. Introduction 	 5
3.2. Relation operations 	 5
3.3. Addition and multiplication operations 	 7
3.4. Set 	 7
3.5. Functions 	 8
3.5.1. User functions 	 8
3.5.2. Standard functions 	 8
3.6. Unsigend constants 	 9
3.6.1. Special symbol NIL 	 9
3.6.2. Constant identifiers and self defining constants 	9
3.7. Variables 	 10
4. Programs 	 11
4.1. Label definitions 	 11
4.2. Constant definitions 	 11
4.3. Type definitions 	 13
4.3.1. General 	 13
4.3.2. Array 	 13
4.3.3. Pointer 	 13
'.3.4. File 	 13
4.3.5. Set 	 14
4.3.6. Record 	 14
4.3.7. Non-standard scalar 	 14
4.3.8. Subrange 	 15
4.4. Variable declarations 	 15
4.5. Procedure and function declarations 	 15
4.6. Statement part 	 16
4.6.1. Assignment statement 	 17
4.6.2. Procedure statements 	******************** 	* 	18
4.6.2.1. User procedures 	 18
4.6.2.2. Standard procedures 	 18
4.6.2.2.1. DISPOSE, PACK and UNPACK 	************* 	18

1
1

4.6.2.2.2. NEW
.6.2.2.3. PAGE

4.6.2.2.4. READLN and WRITELN
4.6.2.2.5. READ and WRITE
4.6.2.2.6. GET, PUT, RESET and REWRITE
4.6.3. GOTO statement
4.6.4. Structured statements
4.6.4.1. IF statement
4.6.4.2. WHILE statement
4.6.4.3. REPEAT statement
4.6.4.4. WITH statement
4.6.4.5. CASE statement
4.6.4.6. FOR statement

18
18
18
19
20
20
20
20
20
21
21
21
22

N.V.PHILIPS Natuurkundig Laboratorium NATLAB
NR 	TPC
DD : 81/01/22
PAR : EO

TWIN PASCAL COMPILER

1. Introduction

In this paper the Twin Pascal compiler is described. The paper is
intended to facilitate compiler maintenance, to describe the generated
object code and to illustrate the correctness of the compiler.

The compilation of a source module occurs in two passes. In the first
'ss the names, types and values are collected; in the second pass the

uoject code is generated.

The compiler produces code for BSM in relocatable form. The Twin Link
Editor is to be used to form load modules that can be executed on the
Twin System.

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG 	2

2. General

2.1. Source input

The source input is supported by a subroutine. This routine gets the
next symbol from the current source line (by skipping comments, blanks
and line markers) and it determines the type of the symbol.

When the current source line is exhausted, this line is printed first
during pass II (if a listing is wanted). Next the following line is
retrieved form the source file.

The recognized symbol types are:

- identifier;
- integer number;
- real number;
- character string;
- special symbol (conform
- end of file.

to Twin Pascal);

The syntax rules of Pascal are used to determine the symbols.

2.2. Recovery from syntax errors

A syntax error appears when the compiler encounters an unexpected
symbol. Recovery from such errors can be done (after signalling the
error) by:

- insertion of the missing symbol;
- replacing the faulty symbol by the expected one;
- skipping source text until the expected symbol is found.

The Twin Pascal compiler uses all 	these methods, but skipping of
source text occurs conditionally. Skipping stops upon the recognition
of a so called "stop symbol". The used stop symbols depend on the
state of the compilation; it is possible to add symbols to the list of
stop symbols and to remove symbols from this list.

2.3. Object code

The produced object code consists of records of different types. The
type is identified by the first byte of the record. The type
identifiers with their meaning are:

H'80': ESD-record, not SO;
H'81': ESD-record, SD;
H'00': TXT-record;
l'01': RLD-record;
H'FF': END-record.

N.V.PHILIPS Natuurkundig Laboratorium
	

TPC

PAG : 	3

The record formats are:

ESD: byte 	0: 	record id, H'80' or H'81'
1-6: 	symbol, left aligned and padded with blanks
7: 	type: 	H'80': SD - section definition

H'00 1: ER - external reference
H'01 1: CD - absolute constant definition
H'2': LD - entry definition
H'3': LD - label definition
H'4': LD - relocatable constant definition
H 1 051: CD - variable definition

8-9: 	value: SD: origin of section
ER: sequence number
LD: address in section
CD: value

10-11: SD only, number of bytes in section.

TXT: byte 	0: 	record id, 11 1 00 1
1: 	number of text bytes
2-3: 	address of text in section
4 up: 	up to 28 bytes of object text.

RLD: byte 	0: 	record id, H'01 1
1: 	number of data bytes
2 up: 	data items with format:

bit 	0-2: 	type: 00X 	8 bit byte
11X - 15 bit address
XXO - local reference
XX1 - external reference

3-7: 	offset in following string of text
8-15: present only with external references,

sequence number of ESD-record.

ND: byte 	0: 	record id, H'FF';
1-2: 	bit 	0: 	type: 0 - entry

1 - no entry
1-15: entry point if bit 0 is 0.

2.4. Symbollist

The symbollist contains two classes of data: 	identifier definitions
and type definitions. The identifier definitions are grouped into
sublists. There exists a sublist for the program parameters, for the
fields in each record and for the identifiers defined in each block.
The format of an identifier definition is:

bytes 0-1: 	address of next identifier definition (high-order byte
is 0 with

2: 	type 	 last
definition)

3-4: 	address of type definition
5-6: 	address
7 up: identifier, terminated by CR

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	4

The general format of a type definition is:

bytes 0: 	number of bytes in type definition
type

2 up: type dependent data

Subroutines exist to:

- open a new sublist;
- close the current sublist (and to proceed with the enveloping

sublist);
- add an identifier definition to the current sublist;
- add a type definition to the symbollist;
- locate an identifier in the current sublist and enveloping

-4blists;
- locate an identifier in the current sublist only;
- locate an identifier in a given sublist;
- step to the sext identifier definition (if any) in a sublist;
- locate a type definition from various sources.

2.5. Types

Each programming element (identifier, expression etc) is characterised
by its elementary type; an identifier is qualified by a general 	type
too. The general types are:

CON: 	constant;
LBL: 	label;
VAR: 	variable;
PVAR: 	variable parameter;
FIELD: record field;
TYPE: 	type;
SPROC: standard procedure;
PROC: 	user procedure;
SFUN: 	standard function;
FUN: 	user function.

The elementary types are:

BOOL:
CHAR:
SCAL:
I NT:
REAL:
SET:
PTR:
FILE:
ARRAY:
REC:
T I D:
UNSP:

boolean;
character;
enumerated scalar;
integer number;
real number;
set;
pointer or label;
file;
array;
record;
descriptor reference;
unspecified.

NIS° subranges of BOOL, CHAR, SCAL and INT can be indicated.

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	5

In order to simplify the type compatibility check s, the elementary
type TID is used in many cases. This type is mainly a reference to
another item in the symbollist (which may be of the type TID).

Two types are compatible if:

I. Both types refer to the same type definition, or:

2. If one of the following statements is true for the (refered)
types:

I. Both types are:

- BOOL, inclusive subranges of BOOL, or
- INT, inclusive subranges of INT, or
- REAL;

2. Both types are one of the types CHAR (or a subrange thereof)
and ARRAY[n] OF CHAR (string), and the lengthes of both types
are the same;

3. Both types are SCAL, inclusive subranges of SCAL, with the
same type id;

4. One type is INT (or a subrange thereof) and the other type is
REAL;

5. Both types are PTR and a component type is UNSP;

6. Both types are SET and a base type is UNSP;

7. Both types are SET with compatible base types.

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	6

3. Expressions

3.1. Introduction

An expression is translated conform to the following syntax rul es:

<expression> 	 <simple expression> <rel> <simple
expression>

<simple expression>

<simple expression> 	-= <sign> <term> <add> <term>
<sign> <term>

<term> 	<factor> <mult> <factor>
<factor>

<factor> (<expression>)
NOT <factor>
<set>
unsigned constant
variable

. function

<set>

<set element>
element>

= [<set element>]

-:= 	<expression> .. <expression> 	<set

! <expression> , <set element>
! nil

<mult> 	::= * ! / ! DIV ! MOD ! AND

<add> 	.:= + ! - 	OR

<sign> 	-:= + ! - ! nil

<rel> 	: = ! <> ! < . <= 	> ! => 	IN

3.2. Relation operations

A relation operation can be executed for a pair of operands that are
simple expressions. The operands must be of compatible types. The type

of the first operand must also satisfy the following requirements:

operation

<, >
<=, >=
=, <>

allowed types

BOOL, CHAR, SCAL, INT, REAL
BOOL, CHAR, SCAL, INT, REAL, SET

BOOL, CHAR, SCAL, INT, REAL, SET, PTR

Wi th the operation IN the allowed types for the first operand are

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	7

BOOL, CHAR, SCAL and INT. With this operation the type of the second
operand must be SET; the base type of this set must be compatible with
the type of the first operand.

The object code contains one of the instructions TE, TLT, TGT, TNE,
TL E, TGE, TIN to execute the operation. The type of the result is
always BOOL.

3.3. Addition and multiplication operations

An addition operation can be executed for one or two operands which
are terms of an expression; a multiplication operation can be executed
for two operands that are factors of an expression. When two operands
'e involved, these operands must be of compatible types. The type of
tne first, or only, operand has also to satisfy the following
requirements:

unary operations 	allowed types

unsigned 	all types
+, - 	INT or subranges thereof, REAL
NOT 	 BOOL or subranges thereof

binary operations 	allowed types

*

DI V, MOD
AND, OR

INT or subranges thereof, REAL, SET
INT or subranges thereof, REAL
INT or subranges thereof (both operands)
BOOL or subranges thereof (both operands)

The object code contains one of the instructions CPL, NOT, ADD, 	SUB,
MULT, RDIV, WDIV, MOD, AND or OR to execute the operation.

If one of the operand types is REAL, the type of the result is REAL.
The type of the result is always REAL with the operation "/". In other
cases the type of the first operand is used as the type of the result.

The operand descriptors are replaced by the descriptor of the result
type.

3.4. Set

The translation of a set begins with the generation of instructions to
construct an empty set. The base type of this set is UNSP.

When the set is not empty, the expressions are translated. After
translation of the first expression the base descriptor is replaced by
the descriptor of the expression and this type is checked. The allowed
(refered) types are:

BOOL,
CHAR (only with length 1),

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	8

SCAL,
INT,

or subranges of these types.

The types of following expressions in the set must be valid base types
and they must be compatible with the derived base type.

If an expression of type CHAR is encoutered, the instructions:

LODI
	

A"
SUB

are generated in order to point to the right bit in the set.

.en a set element refers to a single bit, the instruction SETB (set
bit) is stored in the object code; for set elements refering to a bit
string, the instruction SETBS (set bit string) is inserted.

3.5. Functions

Two types of functions are distinguished, "standard functions" and
"user functions". The standard functions are the TWIN Pascal
functions, a user function is described In a function declaration.

3.5.1. User functions

When a reference to an user function is found, first the instruction
CDSA (create DSA) is generated. This instruction indicates also the
number of bytes in the function result.

-sxt the parameter list is processed. All parameters, conform to the
heading of the function declaration, must be present. When the formal
parameter is a value parameter, an expression is translated, if the
formal parameter is a variable parameter, a variable is processed.

The type of the actual parameter must be compatible with the type of
the formal parameter, but an INT formal parameter and a REAL actual
parameter are not allowed.

After processing of the parameter list the instruction JPS (jump to
subroutine), refering to the entry of the function, is added to the
object code.

The type of the function result is TID. The descriptor refers to the
function descriptor.

3.5.2. Standard functions

operand is optional with the standard functions EOLN and EOF. If an
operand is present it must be a variable of the type FILE. The default

N.V.PHILIPS Natuurkundig Laboratorium
	

TPC

PAG : 	9

operand is the standard input file. The result of these functions is
of the type BOOL.

The standard function RAND must not have an operand. This function
generates a REAL number.

All other standard functions require an operand, which is an
expression. The allowed operand types and the result type depend on
the function, as follows:

function
	

operand types 	result type

CHR 	 INT 	 CHAR
ARCTAN, COS, EXP, LN,

TAN, SIN, SQRT 	INT, REAL 	REAL
3S, SQR 	INT, REAL 	operand type
TRUNC, ROUND 	REAL 	 INT
ODD 	 INT 	 BOOL
ORD 	 BOOL, CHAR, SCAL, INT 	INT
SUCC, PRED 	BOOL, CHAR, SCAL, INT 	operand type

For all standard functions an operation code consisting of the code
ESC and the function index is created.

With the functions SUCC and PRED the operation code is preceded by
instructions to load the limit. With the function SUCC the limit is
the highest possible value of the operand; with the function PRED the
limit is the lowest possible value.

3.6. Unsigend constants

An unsigned constant can be:

the special symbol NIL;
- a constant identifier;
- a self defining constant (number or character string).

3.6.1. Special symbol NIL

When the special symbol NIL is a factor in an expression, instructions
to load a word with the value 0 are generated and a pointer descriptor
with UNSP component type Is produced.

3.6.2. Constant identifiers and self defining constants

Constant identifiers and self defining constants in expressions are
translated in the same way as constants in the constant definition
part. The instruction LODI, followed by the value of the constant, 	is
added to the object code.

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	10

3.7. Variables

A variable starts with either a field identifier (in a WITH statement)
or a variable identifier. First is tested on a field identifier.

The general type corresponding to a variable identifier can be VAR or
PVAR. With variable parameters the address of the variable points to
the location where the actual address is stored. To bad this address,
the following instructions are generated:

LODA 	<address>
	

bad pointer to variable address
LODD 	 load address of variable

With field identifiers the following instructions are produced:

LODA
	

<rec.addr ptr>
	

bad pointer to record address
LOOD
	

bad address of record
LODI
	

<field offset>
	

bad offset of field in record
ADD
	

add address and offset

For other variables only the first instruction (LODA) is formed.

With all types a reference to the identifier type definition is used
as the descriptor of the variable.

When the type of the (partial) translated variable is ARRAY, index
expressions may follow; if the type is REC then field designators are
allowed; when the type is PTR or FILE a reference to the component
type can be made.

To refer to a component (allowed with the types PTR and FILE), the
instruction LODD is produced, because the variable points to the
address of the component. The variable descriptor is replaced by a
-,zference to the component type.

When a field identifier is present (allowed with the type REC) the
following instructions are generated:

LODI 	<field offset> 	load offset of field in record
ADD 	 add record address and offset

The descriptor of the variable is replaced by a reference to the type
definition of the designated field.

When index expressions are present (permitted with the type ARRAY)
instructions are produced to address the designated array component.
This occurs as follows:

1. An expression is translated, the expression type 	must 	be
compatible with the index type but the combination of REAL
expression and INT index is not allowed;

If the index type is a subrange and the lower bound of the
subrange is not 0, the following instructions are formed:

N.V.PHILIPS Natuurkundig Laboratorium
	

TPC

PAG : 	11

LODI
	

<lower bound> 	subtract lower bound
SUB

3. If the index type is CHAR, but not a subrange, the next
instructions are generated:

LODI
	

A l 	subtract lower bound
SUB

4. The instruction LODI is added to the object code;

5. The instructions MULT and ADD are generated;

6. Finally, the array descriptor is replaced by (a reference to) the
type definition of the array component.

If a next index expression is present, this expression is processed.

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	12

4. Programs

Twin Pascal programs are compiled in the form of modules. A module is
either a main program or a procedure module. A main program consists
of a program header and a complete block; a procedure module contains
only a block, but not the statement part of the block.

The generated object file contains the translation of the compiled
block. With the main program this block is followed by the next BSM
instructions:

STOP 	 stop Pascal program
ENTRY 	BA 	4 	 jump to begin of BSM

ISP 	H'01,24. 	reserve room for standard
files

CFCB 	input file descriptor
CFCB 	output file descriptor
CDSA,O 	 create DSA for Pascal program
JPS,0 	Pascal entry 	jump to Pascal program

The label ENTRY identifies the entry point of the load module.

4.1. Label definitions

The declared labels are only stored in the symbollist. Labels declared
at level 0 are also added to the External Symbol Dictionary. Labels In
the main program are external definitions, while labels in procedure
modules are external references.

The bytes 2-6 of a label definition represent:

bytes 1: 	LBL, the type PTR is added upon assignment of the
-ddress

3-4: 	0
5-6: 	address of statement (SSA-address)

4.2. Constant definitions

Constant defined in the constant definition part are stored in the
symbollist. All such constants, except those defined at level 0 of
procedure modules, are also written in the object file.

The format of a constant type definition is:

bytes 0: 	count
1: 	type (BOOL, CHAR, SCAL or INT)
2-3: 	type id wi th SCAL
4 up: constant

Constants defined at level 0 are also represented in the External
ymbol Dictionary. Constants in a main program are external
definitions, constants in procedure modules are external references.

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	13

4.3. Type definitions

4.3.1. General

A type defines the set of values which variables of the type may
assume and the operati ons on these variables. Type definitons are only
stored in the symbollist.

Pointer types may refer to a type that is defined lateron in the type
definition part. In this case an UNSP type definition is generated. As
a result of this, multiple specified type definitions may appear in a
type definition part. If a previously defined type identifier, of type
\JSP, is encountered, the type definition is updated and a reference

Lo this type definition is made.

4.3.2. Array

An array definiton consists of a number of index types followed by a
component type. The index types are simple types which must define a
limited number of discrete values. The component type may be any type.
The format of an array descriptor is:

bytes 0: 	count
1: 	ARRAY
2-3: 	number of bytes in array
4 up: index type followed by component type

The component type may be an array type. This occurs
one index type is specified.

when more than

4.3.3. Pointer

A pointer type defines a reference to a variable of a
component type). A pointer type definition may refer
type that is specified lateron in the type definition
case a component type definition of the type UNSP is
component type definition will be completed when the
type definition is compiled. The format of a pointer

given type (the
to a component
part. In this
generated. This

actual component
descriptor is:

	

bytes 0: 	4

	

1: 	PTR
2-3: address of component type definition in symbollist

4.3.4. File

A file type defines a file together wi th the type of the elements in
the file. A file type cannot be a part of any other type definition.

A file is represented by a File Control Block (FCB). A FCB occupies 16

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	14

bytes. The first two bytes in a FCB contain the address of the file
buffer.

The elements in a file may be of any type. A special class of files
are textfiles, defined by:

TEXT = FILE OF CHAR;

With textfiles room is to be reserved for a complete line of text. A
line may occupy 129 bytes (including the line marker). The format of a
file descriptor is:

bytes 0: 	count
1: 	FILE
2-3: 	length of FCB (16) + length of component type
4 up: component type 	 (130 for textfiles)

The maximum length of a file component is 255.

4.3.5. Set

A set type defines the range of values which is the power set of its
base type. The base type is a simple type that must define a limited
number of discrete values. The limit is 64.

When the base type of a set is a subrange, the lower bound of the
subrange must be the lowest possible value of the unlimited type, e.g.
0 for subranges of INT and "space" for subranges of CHAR.

The format of a set descriptor is:

bytes 0: 	count
1: 	SET
2 up: base type

4.3.6. Record

A record type is a structured type consisting of a fixed number of
components, called "fields", possibly of different types.

Fields in a record are accessible only through a reference to the
record. Therefore, the field identifiers are collected in a sublist.

The format of a record descriptor is:

bytes 0: 	6
1: 	REC
2-3: 	number of bytes in record
4-5: 	address of sublist with field identifiers

4.3.7. Non-standard scalar

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	15

An non-standard scalar defines a set of values by enumeration of the
identifiers which denote these values. The definition of an
non-standard scalar comprises (besides the type definition) also a
number of constant definitions, associated to the value identifiers.
The lowest value is 0. The format of the corresponding constant
identifier definitions is:

bytes 0-1: 	address of next definition
2: 	CON
3-4: 	address of type definition
5-6: 	value
7 up: identifier, terminated by CR

The format of a non-standard scalar type definition is:

bytes 0: 	6
1: 	SCAL
2-3: address of type definition
4-5: value of last constant, i.e. number of elements - 1

4.3.8. Subrange

A subrange defines a set of values which is a subrange of another
simple type, called "host type". Possible host types are BOOL, CHAR,
SCAL and INT. The format of a subrange descriptor is:

bytes 0: 	count
1: 	SUBR + host type
2-3: 	address of host type definition
4 up: lower limit, followed by upper limit

The limits of subranges of CHAR occupy one byte, the limis of
-mbranges of other host types occupy two bytes.

4.4. Variable declarations

A variable declaration is an ordinary identifier definition (see 2.4).

Variables defined at level 0 are also represented in the External
Symbol Dictionary. Variables in the main program are external
definitions, variables in procedure modules are external references.

4.5. Procedure and function declarations

A procedure declaration associates an identifier with a part of a
program that can be activated by a procedure statement. A function
declaration associates an identifier with a part of a program that
computes a value of a simple type or a pointer type. Procedure
declarations and function declarations are similar, except that a
r nction declaration must specify the result type.

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	16

With each procedure and function declaration the static level is
increased, a new sublist in the symbollist is opened and the state of
the DSA location counter is set to 0.

Procedures and functions may have parameters. Only value parameters
(except FILE's) and variable parameters are allowed in Twin Pascal.

The parameters specified in the procedure (function) heading are
stored as the first variables In the new sublist. The descriptors of
value parameters and variable parameters are similar, but the type of
variable parameters is PVAR.

The result type of a function has to be a type identifier which refers
to one of the following types (or subranges thereof):

- BOOL;
- CHAR;
- SCAL;
- INT;
- REAL;

PTR.

Procedure headers and function headers may be followed by one
directives FORWARD or EXTERN.

The directive FORWARD indicates that the procedure (function)
given lateron. EXTERN specifies that the block will be
separately. External references are allowed only at level 0.

Procedure identifiers and function identifiers declared at
appear also in the External Symbol Dictionary. These are
definitions, except when they are declared as EXTERN.

format of a procedure (function) definition is:

of the

block is
compiled

level 	0
external

bytes 0: 	12
1: 	PROC or FUN
2-3: 	0 with PROC, address of type definition with FUN
4: number of bytes in function result
5: bit 0: 	forward indicator

1-7: number of parameters
6-7: 	anchor of sublist
8-9: 	number of bytes in DSA
10-11: DSA location count

After the compilation of the procedure (function) block the
instruction RET (return) is written in the object file.

4.6. Statement part

A statement part shall not occur at level 0 of procedure modules.

AS first instruction of a statement part the instruction ISP

N.V.PHILIPS Natuurkundig Laboratorium
	

TPC

PAG : 	17

(increment stack pointer) is written in the object file. The operand
of this instruction designates the number of bytes used by the
variables (except parameters) declared in the block.

The instruction ISP is followed by a number of CFCB instructions (one
for each file variable declared in the block). The format of a CFCB
instruction is:

bytes 0: 	operation index CFCB
1-2: 	address of FCB (DSA address)
3: bits 0: 	textfile indicator

1-7: parameter number (external files)
4: number of bytes in file buffer (130 for textfiles)
5 up: file name, terminated by CR

e description of a statement part consists of a sequence of
statements. Two statements are separated by the symbol 	';'. The
statement part is terminated by the symbol 'END'.

A statement may be preceded by a label (specified by an integer number
followed by a colon). The label must be declared in the corresponding
label definition part. When a label is encountered, the label
definition is completed.

If with the compilation of a source text a fourth parameter is
specified, the instruction TRACE is generated as the first instruction
of each statement.

A statement begins with a special symbol or an identifier. The special
symbol must designate a structured statement or a GOTO statement. The
identifier must be a variable identifier, a function identifier or a
procedure identifier. A variable identifier and a function identifier
imply an assignment statement; the procedure identifier specifies a
procedure statement.

4.6.1. Assignment statement

Assignment of a value is possible to a variable and to the result of a
function. The type of the left hand part of an assignment statement is
the result of the translation of the variable or it is a reference to
the function result type. The type shall not be (a reference to) a
file.

The type of the right hand part is generated as
translation of the expression. Both types shall be
assignment of a real value to an item of the type INT

The translation of the expression is followed by the
with the static level of the function definition (by
function identifiers) or by the instruction STD (with
variables).

a part of the
compatible, but
is forbidden.

instruction STF
assignments to
assignments to

"END", HELSE" or II
3 	3

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	18

4.6.2. Procedure statements

Two types of procedures are distinguished: "standard procedures" and
"user procedures". The standard procedures are the standard Pascal
procedures, a user procedure is described In a procedure declaration.

4.6.2.1. User procedures

The translation of a procedure statement that refers to a user
procedure begins with the production of the instruction CDSA (create
DSA), with 0 for the number of bytes in the function result. Then the
parameters (if any) are translated (see user functions). Finally the
instruction JPS (jump to subroutine), refering to the entry of the
nrocedure, is formed.

4.6.2.2. Standard procedures

The executed functions depend on the standard procedure identifier, as
fol 1 ows:

4.6.2.2.1. DISPOSE, PACK and UNPACK

Source text is skipped until one of the symbols
"UNTIL".

4.6.2.2.2. NEW

The procedure NEW requires a single parameter which must be a PTR
variable. This variable is translated. Next the following instructions
--e produced:

LODI
ESC
NEW

4.6.2.2.3. PAGE

<component length> 	load length of component
create new variable

A parameter is optional with the procedure PAGE. When a parameter is
present, the procedure statement is translated in the same way as the
procedure statements GET, PUT, RESET and REWRITE. If no parameter is
given, then the translation occurs conform to the procedure statement
WRITELN.

4.6.2.2.4. READLN and WRITELN

A parameter is optional. The first, or only, parameter may be a FILE
riable. The default file variable is INPUT (READLN), respectively
TPUT (WRITELN).

N.V.PHILIPS Natuurkundig Laboratorium TPC

PAG 	19

When no parameter is given or the only parameter is a FILE variable,
instructions are generated to load the address of the (default) file
variable (FCB) and to invoke the corresponding standard procedure.

When there is more than one parameter or the only parameter is not a
file variable, the translation proceeds in the same way as the
procedure statements READ and WRITE.

4.6.2.2.5. READ and WRITE

The first parameter of these procedures may be a file variable. The
default file variable is INPUT (READ), respectively OUTPUT (WRITE).

These procedures require, besides the optional 	file reference, at
last one data parameter. The data parameters are variables (READ),

respectively expressions (WRITE).

When the designated file is not a textfile, the type of the variable
(expression) must be compatible with the file component type, but
combinations of INT and REAL are not allowed.

With the procedure READ and a textfile, the following variable types
(or subranges thereof) are accepted:

CHAR;
INT;
REAL.

With the procedure WRITE and a textfile, the next expression types (or
subranges thereof) are allowed:

BOOL;
CHAR;
INT;
REAL;
ARRAY[n] OF CHAR (string).

With the procedure WRITE an expression may be followed by field width
parameters; 2 field width parameters are permitted with the expression
type REAL, 1 field width parameter is allowed with other expression
types. Field width parameters are expressions which must be of the
type INT. When no field width parameters are given, default indicators
are produced.

After the translation of each data parameter (with possible field
width parameters), instructions are produced to load the address of
the file variable and to invoke the corresponding standard procedure
(either READ or WRITE). With the procedure READ these instructions are
followed by the instruction STD (store datum).

When the last parameter has been proceseed and the designated
- ocedure is READLN or WRITELN, next instructions are generated to
.,ad the address of the file variable and to invoke the corresponding

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	20

standard procedure (either READLN or WRITELN).

4.6.2.2.6. GET, PUT, RESET and REWRITE

These procedure statements require a single parameter that must be of
the type FILE. The translation of the variable is followed by
instructions to invoke the designated standard procedure.

4.6.3. GOTO statement

A GOTO statement must refer to a defined label. A GOTO statement Is
translated into an unconditional jump to the address assigned to the
' ibel .

4.6.4. Structured statements

Structured statements are constructs composed of other statements.

4.6.4.1. IF statement

An IF statement begins with an expression. The type of this expression
must be BOOL. With the translation of an IF statement without an ELSE
clause the following object code Is generated:

<expression>
	

evaluate expression
JPF 	labell
	

jump if false
<statemen t>
	

THEN statement
labell:

r an IF statement with an ELSE clause the next object code is
produced:

<expression> 	 evaluate expression
JPF 	labell 	jump if false
<statement> 	 THEN statement
JP 	label2
<statement> 	 ELSE statement

4.6.4.2. WHILE statement

A WHILE statement begins with an expression. The type of this
expression must be BOOL. The following object code is produced with
the translation of a WHILE statement:

labell: <expression> 	 evaluate expression
JPF 	label2 	jump if false
<statement>
JP 	label'

label I:
label 2-

N.V.PHILIPS Natuurkundig Laboratorium TPC

PAG : 	21

label 2:

4.6.4.3. REPEAT statement

A REPEAT statement begins with a sequence of statements. The last
statement is followed by an expression. The type of this expression
must be BOOL. With the translation of a REPEAT statement the following
object code is generated:

1 abel 1: <statement>

<statement>
<expression>
J PF

sequence of statements

evaluate expression
labelt 	jump if false

4.6.4.4. WITH statement

A WITH statement begins with a string of variables which must be of
the type REC. The address of the sublist with field identifiers of
each record is saved, so the fields of these records are direct
accessible. Also additional tunnamed) variables are created to save
the addresses of the record variables.

The object code contains the following data for a WITH statement:

<variable>
	

determine record addresses

<variable>
<statement>
	

WITH statement

eter processing of the statement the addresses of the sublists with
eield identifiers are destroyed.

4.6.4.5. CASE statement

A CASE statement begins with an expression. The allowed expression
types are BOOL, CHAR, SCAL, INT and subranges of these types.

Next follows a string of case list elements. A case list element is a
collection of case labels followed by a statement, the special symbol
ELSE followed by a statement, or empty. The ELSE form must be the last
case list element of a CASE statement.

A case label is a constant. The constant type must be compatible with
the expression type, but REAL constants are not accepted.

For a case list element, consisting of a collection of case labels and
a statement, the following object code is produced:

CSEL labell 1abel2 	case select

N.V.PHILIPS Natuurkundig Laboratorium 	TPC

PAG : 	22

<constant>

<constant>
labell: <statement>

JP
label2: . . . • .

case labels

statement
label3 	jump to next statement

For a case list element of the form ELSE <statement> the next object
code is generated:

label2: DSP 	expr length 	erase result of expression
<statement> 	 ELSE statement

label3: . . . •

when the ELSE form of the case list element is omitted, the following
Astructions are formed at the end of a CASE statement:

label 2: DSP
1 abel 3: 	

expr length 	erase result of expression

4.6.4.6. FOR statement

A FOR statement begins with an ordinary assign statement. The allowed
types of the left variable are BOOL, CHAR, SCAL, INT and subranges of
these types.

Next foliows one of the special symbols TO or DOWNTO and an expression
denoting the final value of the control variable. The expression type
must be compatible with the type of the control variable, but REAL
expressions are not allowed. An (unnamed) variable is created to keep
the final value.

expression is followed by a statement.

N.V.PHILIPS Natuurkundig Laboratorium
	

TPC

PAG : 	23

The following object code is generated with the translation of a FOR
statement:

<assign>
LODA
<expression>

labell: LODA
variable

LODD
LODA
LODD
TLE
J PF
<statement>
LODA
LODA
LODD
LODI
ADD
STD
JP

label2:

initial assignment
DSA loc counter

	
address of final value
final value

control variable
	

load value of control

DSA loc counter 	bad final value

TGE with DOWNTO
label2
	

jump if final value passed
execute statement

control variable
	

assign next value to control
control variable 	 variable

1
SUB with DOWNTO

l abel l

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25

